
This work was accomplished as part of the internship at the Information and
Language Processing Research Lab, Kathmandu University, Dhulikhel, Kavre
and Language Technology Kendra, Lalitpur, PatanDhoka, Nepal.

RESEARCH REPORT
ON THE NEPALI
SPELL CHECKER

A detailed report on the structure and
functioning of the Nepali spell checker, including
functioning of the Hunspell Spellcheck engine
and extended support for Libre.

AkshayLabhKayastha
B. Tech. 2nd Year, NIT Warangal,

Warangal, A.P., India

DilipYadav
B. Tech. 2nd Year, NIT Warangal,

Warangal, A.P., India

Krishna Sarda
B. Tech. 2nd Year, NIT Warangal,

Warangal, A.P., India

1, akshay.ksth@gmail.com

mailto:akshay.ksth@gmail.com

Research Report on the Nepali Spell Checker

2,dilipptt@gmail.com
3,krishnasarda@gmail.com

Table of Contents
ACKNOWLEDGEMENTS...3

ABSTRACT..4

INTRODUCTION...4

PREVIOUS VERSION – SHORTCOMINGS..5

FLAWS IN APPLICATION:...5
FLAWS IN RESOURCE FILES:..5

THE HUNSPELL ENGINE..7

BACKGROUND..7
STRUCTURE AND ORGANIZATION OF RESOURCE FILES...8

The dictionary file..9
The affix file...9

ISSUES..12

DEVELOPMENT..13

PHASE I: UNDERSTANDING AND UPGRADING THE RESOURCE FILES...13
PHASE II: DEVELOPMENT OF GUI..15
PHASE III: INTEGRATION INTO LIBRE...16

TESTING AND EVALUATION...17

CONCLUSION...18

Page 2

mailto:krishnasarda@gmail.com
mailto:dilipptt@gmail.com

Research Report on the Nepali Spell Checker

Acknowledgements
We would like to specially thank MrBal Krishna Bal of the Department of Computer
Science and Engineering, Kathmandu University for providing his valuable
mentorship for the project. In addition to that we thankLanguage Technology
Kendra for providing the resources required for the project.

Also, we would like to thank Dr. BalaramPrasain of the Central Department of
Linguistics, Tribhuvan University, for providing his invaluable help in the completion
of this project. Furthermore we cannot forget Mr. Rhoit Man Amatya, researcher at
the Information and Language Processing Research Lab,Department of Computer
Science and Engineering, Kathmandu University, for guiding us through the tough
times and for his contributions on the project without which we would have been
nowhere.

Page 3

Research Report on the Nepali Spell Checker

Abstract
This report discusses the design and development issues of the Nepali Spell
Checker application. The methods used for development of the application, as well
as the implementation of the spellcheck feature have been discussed in the report.
In addition to that, differences from the previous version of the application have
also been highlighted.

Introduction
Since the advent of the Unicode encoding system1and the development of the
Nepali Unicode keyboard layout, the task of typing in Nepali has been
greatlysimplified. Being miles ahead of the ASCII based traditional keyboard
layouts, in terms of ease of learning and accessibility, the Unicode layout has
attracted a large number of the people into using it. Lives have been simplified and
revolutionized. Along with this change, it is extremely important to incorporate
efficient spellchecking modules to whatever software supports Unicode. While it is
not possible to do so in Microsoft Word, which is by far the most used word
processor today, we can certainly approach open source word processors such as
Libre. Yet this is still inconvenient as Libre is not a cross platform word processor.
Hence, a standalone cross platform spell checker for Nepali language is a necessity
for today’s users.

MadanPuraskarPustakalaya (MPP) has already released at least five different
versions of the Nepali Spell Checker incorporated with the localized version of
OpenOffice.org Writer application2,3.The latest version of the Nepali Spell Checker
came out with the Nepali localized OpenOffice.org Writer 2.4, which was released in
May 2009. This version of the Spell Checker had the word coverage of 6 million
Nepali words. The first version of Standalone Nepali Spell Checker that was also
released on May 2009, freed users from the need to install OpenOffice .org Writer
application as a prerequisite for using the Spell Checking utility for Nepali.

Just like the previous version, the current version of the Standalone Nepali Spell
Checker also runs on the HunSpell4 engine and the two resource files for Spell
Checking – the .dict and .affix files, customized for Nepali language. The use of
HunSpell engine in the standalone application gives robust performance, in the
already feature rich and light weight text editor. Regrettably, this version of the
Standalone Nepali Spell Checker works only on a UNIX platform.

1http://unicode.org
2 B. K. Bal and P. Shrestha, "Nepali Spellchecker," PAN Localization Working Papers 2004-2007.
3 B. K. Bal, B. Karki, and L. Khatiwada, "Nepali Spellchecker 1.1 and the Thesaurus, Research and
Development," PAN Localization Working Papers 2004-2007.
4http://en.wikipedia.org/wiki/Hunspell

Page 4

http://en.wikipedia.org/wiki/Hunspell
http://unicode.org/

Research Report on the Nepali Spell Checker

Previous Version – Shortcomings
The first Standalone Nepali Spell Checker was based on the .NET wrapper for the
HunSpell Engine. The Graphical User Interface (GUI) for the application was created
in Microsoft C#.NET 2008. The spell checking mechanism was flawless and
produced efficient replacement suggestions. The context menu was easy to use.
But there were still a few drawbacks in the application. They can be listed as
follows:

FLAWS IN APPLICATION:
1. The application was unable to detect faulty spellings simultaneously as the

user typed. A button was used to check for mistakes. This was felt as an
inconvenience for the daily user.

2. The application had a bug, which limited its use to 32-bit architectures.

FLAWS IN RESOURCE FILES:
The entire spell checking engine is dependent upon the two resource files (.dic
and .aff). Several words were seen to be absent in the dictionary (.dic) file. In
addition to that the affix (.aff) file was reported to have some missing rules. These
two issues were the primary drawbacks for effective spell checking.

Hence, a list of common issues was created. The Issues section involves all issues
that have been taken care in this version of the Spell Checker.

Page 5

Research Report on the Nepali Spell Checker

Page 6

Research Report on the Nepali Spell Checker

The HunSpell Engine
BACKGROUND
Hunspell is a spell checker and morphological analyzer designed for languages with
rich morphology and complex word compounding and character encoding, originally
designed for the Hungarian language. Hunspell is based on MySpell5 and is
backward-compatible with MySpell dictionaries. While MySpell uses a single-byte
character encoding, Hunspell can use Unicode UTF-8-encoded dictionaries.

This Spell Checker engine was initially developed for the Hungarian Spell Checker
but now has the capabilities of processing theoretically all languages with Unicode
support. The HunSpell framework comprises the HunSpell engine and two resource
files – the .dict and the .affix files. Hunspell is open source and several
programming languages have built modules that act as wrappers for its
functionality. The python module wrapper is called pyhunspell. NHunspell is a C#
interface library that uses Hunspell functions.

The Hunspell engine basically performs a lookup in the .dict file for a word and at
the same time also works on forming derivational words out of the head words in
the .dict file and the corresponding rules in the .affix file. If a matching word does
not result out of the above process, it infers that the given word is typed incorrectly
and hence it generates a list of possible suggestions of the word by using
Levenshtein6 Edit Distance Technique.

5https://en.wikipedia.org/wiki/MySpell
6http://en.wikipedia.org/wiki/Levenshtein_distance

Page 7

http://en.wikipedia.org/wiki/Levenshtein_distance
https://en.wikipedia.org/wiki/MySpell

Research Report on the Nepali Spell Checker

Figure 1 System Architecture of the Standalone Spell Checker

The Hunspell’s code base comes from the OOoMySpell. It improves upon MySpell’s
functionalities in the following ways:

1. It has Unicode support (first 65535 Unicode character)

2. Morphological analysis can be done (in custom item and arrangement style)

3. Max. 65,535 affix classes and twofold affix stripping (for agglutinative
languages, like Azeri, Basque,Estonian, Finnish, Hungarian, Nepali, Turkish,
etc.)

4. It supports complex compounding (for example, Hungarian and German)

5. It supports language specific algorithms (for example, handling Azeri and
Turkish dotted i, orGerman sharp s)

6. It can handle conditional affixes, circumfixes, fogemorphemes, forbidden
words, pseudoroots andhomonyms.

7. It has been released under GPL/LGPL/MPL tri-license

STRUCTURE AND ORGANIZATION OF RESOURCE FILES
The dictionary files and affix files are extremely important in order to allow the
proper functioning of the hunspell engine. The first file is a dictionary containing
words for the language, and the second is an "affix" file that defines the meaning of
special flags in the dictionary. The spell checking is done using the .aff file for the

Page 8

3

अकमकाउनु

अकर /15

अकरण/18,22,15, 34

Research Report on the Nepali Spell Checker

language together with the .dic file. The .dic file is a list of words along with a group
of characters which refer to the affixes found in the .aff file. This saves space

because instead of including all forms of a word(for example, खा = खानु, खाने, खादै,etc.),

the .dic file will include the word once and the references to the affixes in the .aff
file allow the construction of all the other forms.

Both files thus have a certain format to be followed for the HunSpell to recognize
them and effectively use them. A brief structure of both the files has been given
below:

The dictionary file
A dictionary file (*.dic) contains a list of words, one per line. The first line of the
dictionary (except personal dictionaries) contains the approximate word count (for
optimal hash memory size). Each word may optionally be followed by a slash ("/")
and one or more flags, which represent affixes or special attributes. Although
default flag format is a single (usually alphabetic) character, the format for
‘ne_NP.dic’ is numeric. A sample segment of ‘ne_NP.dic’is shown below:

In the above dictionary file, the first line has the number "3", which gives the

optimal hash memory size andthe number of words, which are “अकमकााउनु", "अकर",

and "अकरण". The first word does not have any flag. Theword "अकर" has one flag which

is separated by a "/" back slash. The flag "15" points to a rule named "15" in

theaffix file. Similarly in the next line, the word "अकरण" and its field are separated by

a "/". The flag "18, 22, 15, 34"points to the rule name "18", "22", "15" and "34" in
the affix file.

The affix file

Page 9

SET UTF-8

TRY ाािााीााुूाेााैोाौंाःाँअअााइईउऊऋएऐओऔकखगघङचछजझञटठडढणतथदधनपफबभमयरलवशषसहक्षत्रज

FLAG num

REP 24

REP िा ाी

REP ाी िा
SFX 1 Y 3

SFX 1 ा ्0/17X ा्

SFX 1 ा्नु/17X,20Xा्

SFX 1 0 ाकेो/17X,19X [^ाुइिााा]

SFX 1 Y 3

SFX 1 ा ्0/17X ा्

SFX 1 ा्नु/17X,20X ा्

SFX 1 0 ाकेो/17X,19X [^ाुइिााा]

Research Report on the Nepali Spell Checker

The affix file consists of the rules that will add affixes to the words which are
present in the .dic file. Asmentioned earlier, the flag, which is usually a character, in
the dictionary file points to these rules. To clarifythe concept of the affix file
consider the following sample from our affix file,‘ne_Np.aff’:

An affix is either a prefix or a suffix attached to root words to make other words. For

example खा ->खानु by dropping the "ा"् and adding a "नु" (the suffix), or राम्रो->राम्रो by

simply adding "न" (the prefix).

An affix file (*.aff) may contain a lot of optional attributes. For example, the first line
consisting of SETspecifies the character set used for both the dictionary file and the
affix file (should be all uppercase). Theabove affix file example defines UTF-8
character encoding. TRY, in the second line, sets the changecharacters for
suggestions. It is used in building suggestions for misspelled words; for example,

themisspelled word "नामा" will have a suggestion "नािम" by substituting the "ाा" with

an "िा". The characters in thestring should be listed in order or according to the

character frequency (highest to lowest). The suggestionsproduced using the 'TRY'
option differs from the bad word with a single English letter or an apostrophe.
Agood way to develop this string is to sort a simple character count of a word list.
REP sets a replacementtable for multiple character corrections in suggestion mode.
The first line that consists of REP informs thatthere are two entries for the REP
option. With these REP definitions, Hunspell can suggest the right wordform, when

the misspelled word contains ‘िा’ instead of ‘ाी’ and vice versa, for example, if we

write 'पनी' it cansuggest the right word 'पिन'. PFX and SFX defines prefix and suffix

classes named with affix flags.The affix file is space delimited and case sensitive.
So we can interpret the affix file's rule lines, as follows:

Page 10

Research Report on the Nepali Spell Checker

In the first line there are four fields, whose description are given in the table below:

Fiel
d

Nam
e Description

1 SFX indicates that this is a suffix(PFX indicates a prefix)

2 1
this is a name for the suffix it represents which should be unique for
every different suffix or prefix entry(or the name for the prefix when
PFX is present)

3 Y indicates it can be combined with prefixes(cross product)

4 4
indicates that sequence of 4 affix entries are needed to properly store
the affix information

The remaining lines describe the unique information for the 4 affix entries that
make up this affix. All thefields in the remaining line are the same; fields in the
second line are described below:

Fie
ld Name Description

1 SFX indicates that this is a suffix(PFX indicates a prefix)

2 1
this is a name for the suffix it represents which should be unique for
every different suffix or prefix entry(or the name for the prefix when
PFX is present)

3 ा्
the string of chars to strip off at the end before adding affix (a 0
here indicates the NULL string, and in case of PFX, the chars are
strippedoff at the beginning of the word)

4 ाेको
the string of affix characters to be added at the end of the word(a
0here indicates the NULL string,and in case of PFX, the chars
areadded at the beginning of the word)

5
/
17X,19
X

Other rules that can be cascaded with the current affix rule are
placed in this order. In this instance rule set 17 and 19 are allowed
to be cascaded onto the current rule.

6
[^ाुइिा

ाा]ा्

the conditions which must be met before the affix can be
applied,which represents a regular expression("." a dot means there
is nocondition)

Field 6 might be confusing. Since this is a suffix, field 6 tells us that there are 2
conditions that must be met.The first condition is that the character next to the last

Page 11

Research Report on the Nepali Spell Checker

character in the word must *NOT* be any of thefollowing “ाु”,”इ”,”िा” or”ाा”. The

second condition is that the last character of the word must end in "ा"्.

The above format of the Dictionary and Affix files, although brief easily suffices
basic upgrades for the Nepali Spell Checker. For additional OPTIONs and FLAGs,
please read through“PAN Localization Guide to Localization of Open Source
Software”.

Issues
This section describes in detail all the noticeable issues perceived in the first
version. The issues were discussed among by experts through several meetings7.
Below is a list of all significant issues:

1. Several words have variations in their typing techniques. Let us take an

example of the word ‘पक्का’. The second character is a half form of the

consonant ‘क’. There are two ways to create the half form and connect it with

the other consonant. The first one involves adding a ‘ा्’ after the full form of

‘क’, and then typing in another ‘क’. Doing this gives us ‘क्क’ (‘क’+‘ा’्+‘क’).

Another way to do that is by adding a Zero Width Joiner (ZWJ) after the ‘ा’्.

Hence ‘क’+‘ा’्+ZWJ+‘क’ is also ‘क्क’. The ZWJ in fact forces the consonant into

its half form.
The problem with this though is that the Spell Checker would only detect the
former version as correct and the latter as incorrect.

2. Words in Nepali often consist of a number of added ‘vibhaktis’ such as ले, लाई,

को, का, की, रो, रा, री, नो, ना, नीetc. The Spell Checker failed to recognize forms of

words that had one or more than one such ‘vibhaktis’ added at the end of the
word.

3. The spell checker also missed to recognize the variations in the writing style

of several words. For example, अङ, अंक, मिंशर, मिर.ङ्सर.

4. The ‘Add’ function in the Spell Checker worked only for the current session
and would not work after the application was opened the next time. It hence
worked more like an ‘Ignore’ function.

5. Errors in the affix file caused errors in several word structures that involved

the Zero Width Joiner (ZWJ). Because of that words such as ‘पयो’ and ‘पुयरउनु’

were shown to be correct instead of the words ‘पर्‍यो’ and ‘पुर्‍याउनु’. The ZWJ was

7Meetings were held among members of the Language Technology Kendra (LTK) and SIL.

Page 12

http://www.panl10n.net/english/outputs/GLOSS.pdf
http://www.panl10n.net/english/outputs/GLOSS.pdf

Research Report on the Nepali Spell Checker

found to be missing in the former word structure in between the character ‘र’्

and ‘य’.

6. The Zero Width Non Joiner (ZWNJ) works just the opposite of ZWJ i.e. it blocks
the formation of half forms in the consonant. Although the use of ZWNJ is

very rare in Nepali, words such as ‘श्रीमान्‍को’ require it. Without the ZWNJ the

word would look like ‘श्रीमान्को’ which is incorrect. The Spell Check although

indicates the latter as correct instead of the former one.

7. The current dictionary files only contain a total of around 36000 words. It
misses out several words. It was essential to add many more words to the
dictionary to increase accuracy.

8. As mentioned before, the members of the meeting found it very important for
the Spell Checker to work right after the completion of the word after hitting
‘Space Bar’.

Development
The development of the application was finished in three phases.

PHASE I: UNDERSTANDING AND UPGRADING THE RESOURCE
FILES

The primary objective of the new version of the Spell Checker was to be more
efficient. This required properly understanding the working of both .dic and .aff
files.

After reading through all documents related to the structure and formation of .dic
and .aff files, a need arose to clearly map words in the .dic file to the rule sets in
.aff file. Mapping the files would give us a strong insight on the target word type
and functions of each word set. It was also noticed that the rules in the .aff file were
numerically named, making it much easier for the mapping. A python script was
written therefore to create separate files for each rule sets, with only the related
words falling in each. A total of 50 rule sets are present in the .aff file. 50 separate
text files for each rule set were created using the script, thus allowing us to figure
out the target word group and the suffixes (or prefixes) that each rule added to the

Page 13

Research Report on the Nepali Spell Checker

root word. After several meetings with Dr. Prasain, it was seen that among the 50
rule set, only about 10 rules were recurrently used. Rule sets 15, 22, 18, 8, 43, 9
and 42 belong to this category each having at least more than 1000 words and with
rule 15 being the most regularly used and rule 42 the least regularly used. Rule no
17 was the only prefix rule whereas Rule no 49 was the one that applied to
numbers. The remaining rules had very small functionality and were seldom used.

One of the objectives required the upgradingof the current .dic file with more words.
A total list of around 38000 words extracted from the Brihat Sabdakoshand
provided for addition into the existing dictionary. A Python script was used to
remove duplicates from this file, which already existed in the current dictionary.
Hence a ‘difference’ dictionary file was created. With mapping data and
considerable help from Dr. Prasain, the file was changed to match standard .dic file
format by upgrading rules for each root word obtained. Merging the obtained file
with the existing dictionary, a final dictionary file was obtained which contained
approximately 52000 root words.

Fixing issues in the current affix file was the next target. This was done by carefully
evaluating each one of the word types mentioned above in the Issues section.
Each faulty words type and structure was evaluated and the previously obtained
mapping was used to figure out the faulty rules in the .aff file.

The following methods were tried to resolve each issue in the Issues section:
(Note: The order below mirrors the issue list in the mentioned section)

1. Since this was an issue related to the root word itself. A new duplicate word

was added into the .dic file for each such word with a ‘क्क’ present in its

structure. The duplicate word was typed in the alternative typing format
(including the ZWJ). Although this increased redundancy in the .dic file, it was
felt to be very insignificant in terms of efficiency.

2. From the mapping obtained, it was found that the rules most used for
‘vibhaktis’ was Rule no 15, 18, 19 and 22. The mentioned rules were fixed by
compounding them to each other in a loop, in order to allow multiple
‘vibhaktis’in the root word. The drawback in this fix was that there was no

way to ensure that a terminating ‘vibhakti’ (‘ले’ and ‘लाई’) was added in the

end.

3. Again like Issue no. 1, this concerned with the root words itself. Hence,
multiple similar versions of words were added to the .dic file to achieve the
fix.

4. It was not possible to fix this problem through the resource files. The fix has
been mentioned later in Phase II: Development of GUI.

5. The fix for this issue was obtained by modifying all rules that concerned with

adding suffixes starting with the letter ‘य’ such as ‘यो’ and ‘याउनु’. A Zero Width

Joiner (ZWJ) was added to the beginning of every such rule. Also a condition

was set that made the rule valid only for root words ending with ‘र्’.

Page 14

Research Report on the Nepali Spell Checker

6. This issue was rectified by adding a Zero Width Non Joiner (ZWNJ) to the end

of the word ‘श्रीमान्‍’ in the .dic file.

7. Fix for this issue has been mentioned already in earlier parts of this section.

8. The fix has been mentioned later in Phase II: Development of GUI.

PHASE II: DEVELOPMENT OF GUI
Development of a new Graphic User Interface (GUI) was essential for this
application as the previous one had various shortcomings such as inability to work
on a 64-bit architecture and concurrent spellchecking. The first step of this phase
was to study the existing source files of the previous application which was written
in C# using Visual Studio 2008. The second step required selecting the right base
language for developing the interface. Hence, Python was chosen as the base
language and PyQt4 was used to develop the GUI. All development work was done
on a Linux system.

The target at first was to create a simple form of a rich text editor that supported
Unicode and especially Nepali. PyQt4 provided a nice support for doing all that,
and hence creation of the central Text Box, Application Menus and additional
Buttons was easily completed within a week. The process of creating the skeleton of
the application can be summarized in three simple steps:

1. Using the QtDesigner application to form the overall structure, by easily
adding menus, icons, toolbars, and widgets. QtDesigner is a WYSIWYG
(What You See Is What You Get) application that allows creation of a .ui
file.

2. Once the .ui is successfully created, pyuic4 can be used to convert the
.ui file into .py file. Doing so creates an importable class that stores
everything required to create the Interface of the application. The
structure of this .py file can be seen in the Source files.

3. With the converted .py file ready, all that is required is to import this
python class into the main code file. The main file should also import the
PyQt4 module.

Thecodecs module provided easy support for accessing Unicode encoded files and
using them.

The next step was to figure out a way to access the HunSpell engine and use it in
the main code. The previous version had used a .dll file in order to import functions
from the HunSpell engine. Doing the same using Python was very difficult as the
exact structure of the .dll file was unclear. Instead we used a python wrapper
module called hunspell (or pyhunspell) which imported the HunSpell engines
abilities. The use of this hunspell module was simple enough and efficiently used
the resource files in the main code.

The next period of this phase involved correctly displaying incorrect words, while
typing into the textbox. For this purpose a sub-class of the Qt module called

Page 15

Research Report on the Nepali Spell Checker

QtSyntaxHighlighter was overridden. QtSyntaxHighlighter class along with
the hunspell module allowed checking for incorrectly spelled words and
underlining them. For this purpose an external module called regex was also used
as it provided an alternate for the re module8 but with better support for Unicode.

A Custom Context Menu was also created using inbuilt features of the Qt module.
Spelling suggestions for the selected word (if incorrect), and options to ‘Add to
Dictionary’ or ‘Ignore’ the currently selected incorrect word, were added into the
Custom Context Menu. The ‘Add to Dictionary’ feature was used without using the
HunSpell engine and directly accessing the .dic file, adding the selected word into
itand updating the file header. All other features used functions of the hunspell
module.

This completed a major task of the application and delivered the target. All code
used for the abovementioned purposes can be seen in the Source files.

After the completion of the primary objective of the GUI, a couple of other features
were added to provide better functions for the Text Editor, such as Find and
Replace feature and a GoTo Line feature. These were done by creating additional
widgets in the GUI skeleton and then adding code for the respective feature.

One special feature added to the application is a BugReport feature, which allows
users to report errors to a specific mail address9, which can then be monitored and
amended. The end product was a basic text editor with Nepali spell checking.

PHASE III: INTEGRATION INTO LIBRE
The second major objective of the project was to implement the same spell
checking feature into Libre Office. Earlier MadanPuraskarPustakalaya (MPP)
successfully integrated Nepali spell checking into earlier versions of OpenOffice.org.
Since OpenOffice.org used the HunSpell engine, all that was required was adding
the .dic and .aff files to the required directory.

OpenOffice.org though is now no longer used in popular Linux distributions. Most
have switched to the more popular Libre Office. Luckily however after minor
research it was found out that Libre also used the HunSpell engine to power its spell
checking. Libre can integrate Nepali spell checking by adding an extension. These
extensions are often called OpenOffice Extensions as they add OpenOffice features
into Libre. The extensions are of the file format .oxtwhich on unzipping produces
both the .aff and .dic files.

Hence, the upgraded resource files from the project were used to restructure the
extension, which on use provided the same functionality as the Spell Checker in
Libre.

8re is used to find certain patterns in a string of text, and easily iterate them.
9nepalispellcheck@gmail.com

Page 16

mailto:nepalispellcheck@gmail.com

Research Report on the Nepali Spell Checker

Testing and Evaluation
After modifying the resource files with added wordsand rules, tests were carried out
to measure the increase in efficiency of the application. A set of 10 Nepali texts
were selected for the testing process. These text consisted minimal errors in
spellings. These were then copied one by one into the spell checker while using the
older .affand .dic files. The total number of errors was counted by making a small
modification to the main file that allowed it to print out the total words with
incorrect spelling. The same process was then applied with the new set of .affand
.dic files. The outcome has been shown in the table below:

File
No.

Total Word
Count

Errors
using old
set

Errors
using
improved
set

Difference
in number
of errors

Improveme
nt in
accuracy (in
%)

1 629 123 90 33 26.83

2 1252 237 191 46 19.41

3 668 133 104 29 21.80

4 706 79 62 17 21.52

5 643 114 105 9 7.89

6 509 89 73 16 17.98

7 631 78 55 23 29.49

8 705 117 90 27 23.08

9 890 120 78 42 35.00

10 1238 231 100 131 56.71

Total 7871 1321 948 373 259.71

Avera
ge

787.1 132.10 94.80 37.30 25.97

The value for Improvement in accuracy was obtained using the following formula:

Improvement in Accuracy

=

Difference in number of

errors

X 100%

Errors using old set

Page 17

Research Report on the Nepali Spell Checker

Hence, from a sample of 10 text files with a total word count of 7871 words, it was
found that on an average the new version was 25.97% more accurate than the
older version. In simpler words, the newer version found made 25.97% less
incorrect decisions than the older one.

Conclusion
Although several improvements were made to the resource files, it is yet not
flawless. A perfect spell checker is an important tool for Nepali language
processing. However improved the new resource files are there are yet many more
words to be added to the dictionary and many more rules to be modified in the affix
file. Only then will the efficiency of the spell checker close towards perfection.

The Spell Checker as well, can go through many more improvements. As all the
tools and used for the creation of the Spell Checker are open source, developers are
encouraged to reformat the code structure in order to increase efficiency of the
software as well.

This is a small step towards localizing every aspect of our digital lives. Spell
Checkers such as these will certainly encourage more users to start typing in
Nepali. Maybe someday digital communication might no longer be awkward for
native speakers and the people of our nation might start taking pride in our national
language in a complete sense.

Page 18

	Acknowledgements
	Abstract
	Introduction
	Previous Version – Shortcomings
	Flaws in Application:
	Flaws in Resource FILES:

	The HunSpell Engine
	Background
	Structure and organization of resource files
	The dictionary file
	The affix file

	Issues
	Development
	Phase I: Understanding and upgrading the Resource Files
	Phase II: Development of GUI
	Phase III: Integration into Libre

	Testing and Evaluation
	Conclusion

